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Least-squares refinement of R2 = ~. I/1-1212, where I~ and 12 are, for example, the observed and calculated 
intensities for a crystal structure, is equivalent to obtaining a least-squares fit between the Patterson 
syntheses for the observed intensities and the model structure. Least-squares refinement of R~= 
Y.IFI- Fzl 2 is equivalent to obtaining a least-squares fit between the calculated electron density and that 
obtained from a Fourier series based on the observed structure factors; R~ approximates to the usual 
residual RI = Y]lFd- IF2112 when the model is good and refinement is approaching completion. Inclusion 
of weights in the residuals is equivalent to distorting the Patterson or electron-density synthesis to be 
fitted by modifying the amplitudes of the Fourier coefficients by factors proportional to the square 
roots of the weights. 

It is generally accepted that all methods of refinement 
lead to much the same parameters; this has been 
discussed, for example, by Cochran (1948, 1951) and 
Cruickshank (1952). Although the parameters are 
much the same, they are not identical: different 
methods may lead to different biases or different 
variances. Wilson (1973) collected the conditions under 
which refinements in RI and R2 (as defined in the 
abstract) would lead to the same results, to the first 
order of approximation. It was later shown (Wilson, 
1974; Lomer & Wilson, 1975) that, even when the 
conditions of the 1973 paper were satisfied, refinement 
of the scaling factor in different ways would ordinarily 
lead to different values. So far, other parameters have 
not been treated with as high a degree of approxima- 
tion. 

The physical meaning of the refinement process 
does not seem to be well known. Refinement of 

R2= ~ ]I1-I2[ 2 (1) 

to give a minimum with respect to the adjustable 
parameters corresponds exactly to obtaining the best 
fit, in the least-squares sense, between the Patterson 
synthesis based on the observed intensities and that 
based on the intensities calculated from the model. 
Refinement of 

Z IVl-V212 (2) 
corresponds similarly to the best fit, in the least- 
squares sense, between the observed and calculated 
electron densities. The residual (2) is not that usually 
considered: 

R~= ~ liE1[- [F2[[ 2, (3) 

but approximates to it when the model is good and 
refinement is approaching completion. These results 
are probably simple corollaries of the Riesz-Fischer 

* Permanent address. 

theorem for finite trigonometrical series (see, for 
example, Hardy & Rogosinski, 1944), but it is con- 
venient to derive them in an elementary fashion in one 
dimension. It is easy to generalize to three dimensions. 

Calculation 

Suppose thatf(x)  is a periodic function of period unity 
(e.g. the electron density) and that g(x) is a model of it 
with adjustable parameters (e.g. a set of atoms with 
adjustable positions, temperature factors, etc.). The 
mean-square difference between f and g is 

I1 ° If-g[2dx (1) 

= llo(f-g) (f*-g*)dx . (2) 

In the example f and g will be real, aside from the 
effects of dispersion, but it does no harm to keep the 
expressions general. The expression (2) will be a 
minimum with respect to some parameter r of the 
model g if its derivative with respect to r is zero, that 
is, if 

- Ilog'[f*-g*]dx- I'o(g')*[f-g]dx=O, (3) 

which reduces to 

I" [g*g' +g(g')*]dx= I" [f*g' +f(g')*] d x ,  (4) 
d0 dO 

where primes denote differentiation with respect to 
the parameter r. Refinement is complete when equa- 
tions like (4) are satisfied for all the adjustable param- 
eters. 

Any reasonable periodic function can be represented 
by a Fourier series 
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f ( x ) =  ~ Fh exp (2rcihx) (5) 
h ~  - - o o  

where I' Fh = f(x) exp (--2rcihx)dx, (6) 
0 

and similarly for g(x). In the example F~ will be the 
observed structure factors including their signs or 
phases, and Gh the calculated. The residual R[ is given 
by 

R ; =  ~ I f n -  Ghl 2= ~ (F~,-Gh) (F~,-G~,), (7) 
h h 

and will be a minimum when its derivative with 
respect to r is zero. Differentiation gives, since G~ is 
the function of r, 

-- ~ G~,[F;-G*~]- ~ (G'h)*[Fh-G,]=O, (8) 
h h 

which reduces to 

~[G~,G~+Gh(G'~)*]=~[F2G£+F~,(G£)]. (9) 
h h 

It is readily shown that (9) is, term by term, the same 
as (4). In the first term of (4) replace g by its Fourier 
components, obtaining 

llo g*g'dx= f'0[ ~ G~ exp (-22zihx)] 

x [ ~  G~, exp (2rcikx)] dx 

= ~.. G; G;, 11 exp [2rci(k- h)]dx. (10) 
h,k  dO 

The integral on the right is zero unless h =k,  when it 
has the value unity,  so that 

f l Gh Gh, g*g'dx= ~ * ' (1 1) 
0 h 

which is the first term of (9). The other terms may 
similarly be shown to be equal. Minimization of the 
residual R~ thus leads to exactly the condition required 
to give the best fit, in the least-squares sense, between 
the electron density, as represented by all observed 
structure factors, and the model chosen to represent 
the structure. The residual R~, given by (7), is not the 
same as the residual R~ ordinarily used in structure 
refinement, as the latter is based on levi and IGn[. 
However, towards the end of the refinement of a 
structure with a good model, Fh and G~ will have the 
same sign if the structure is centrosymmetric, or nearly 
equal phases if non-centrosymmetric, so that one 
would expect that refinement in R~ is very nearly 
equivalent to a least-squares fit between the real and 
the model electron densities. Refinement of R2, given 
by 

R2 = ~ (I~, - Hh) z, (12) 
h 

where Ih and H~ are the observed and calculated 
intensities, is analogously seen to be equivalent to 
obtaining the best fit, in the least-squares sense, be- 
tween the Patterson density, as represented by the 
observed intensities, and the Patterson density of the 
model chosen to represent the structure. In this case 
no qualifications are necessary, since I and H are 
necessarily real and of determinate sign. 

Effect of weights 

In most crystallographic applications it is necessary 
to give zero weight to reflexions that have not been 
measured, because they were outside the limiting 
sphere, or were obscured by part of the apparatus, or 
were affected by Umweganregung or severe extinction. 
(Reflexions measured as zero or negative within the 
limits of statistical fluctuation do not come into this 
category, and should be included in the least-squares 
refinement.) In addition to this necessary zero 
weighting, it is common to include other weights, 
based on counting statistics and other estimates of the 
variance of the observation. Tracing the above 
argument backwards shows that refinement of the 
residual is then equivalent to obtaining the best fit, in 
the least-squares sense, between a fictitious model and 
a fictitious electron (Patterson) density in which each 
coefficient of the Fourier series is multiplied by the 
square root of the weight. If the model is perfect (in 
the sense that it has the same functional form as the 
true density, and differs from it only in that the 
adjustable parameters have to be determined) this will 
not matter, and the parameters will be unbiased 
estimates of the true parameters, though different 
weights will give different variances. If the model is 
defective, however, the estimates will be biased in the 
direction of fitting the fictitious density, distorted by 
the weights and termination-of-series effects, rather 
than being unbiased estimates of the true parameters. 
Least-squares refinement of a residual, though it 
makes working with a partial data set easier, does not 
entirely avoid the bias associated with termination-of- 
series etc. effects if the model is defective. Analogy 
with the result for the scaling factor (Lomer & Wilson, 
1975) suggests that even statistical fluctuationst may 
bias results of refinement in R1. Use of weights pro- 
portional to 1-1 (approximately corresponding to 
counting statistics as the only source of variance) 
turns refinement of R2 into something closely 
resembling refinement of RI (unweighted). 

The actual result obtained by Cochran (1948) was 
that refinement in R~ with weights equal to the recip- 
rocal of the atomic scattering factor of the atom 
whose positional coordinates were being sought gives 
the coordinates of the maximum of the electron 

t Note added in proof: In a paper now submitted for pub- 
lication it is shown that weights depending explicitly on Ih 
produce bias in refinements in R2. 
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density as represented by a Fourier series with the 
observed structure factors as coefficients. This is a 
very interesting result, but it should be noted that the 
criterion for atomic position (maximum of electron 
density) is different from that of obtaining a least- 
squares fit for the entire electron density map, and that 
different weighting is required for atoms of differing 
atomic number. One would expect the least-squares 
fit to give a better estimate of the atomic positions, but 
in some applications it could be that the position of the 
maximum electron density is the focus of interest. 
Cruickshank (1952) has obtained results similar to 
Cochran's for the relation between peaks in a Patterson 
synthesis and refinement in a suitably weighted R2. 

These reflexions were stimulated by the problem of 
locating the halogen atoms in Cd analogues of apatite 
(Sudarsanan, Wilson & Young, 1972; a full account is 
in preparation). I am indebted to Professor R. A. 
Young for stimulating discussions and to Professor 
D. W. J. Cruickshank, Dr David Harker and Profes- 

sor M. M. Woolfson for helpful correspondence. 
Travel and subsistence expenses provided by The 
Royal Society and The William Waldorf  Astor 
Foundation made possible a visit to Atlanta during 
which the work was completed. 
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The possibility that two arbitrary lattices, 1 and 2, have a coincidence-site lattice (CSL) in common is 
examined. Let T be the 3 x 3 matrix that maps a basis of lattice 1 onto a basis of lattice 2 and let IITI[ be 
the absolute value of its determinant. It may be assumed that IITll >-- 1. There is a CSL if, and only if, T is 
rational. The main result is that the density ratio, Z'2, of coincidence points to points of lattice 2 is equal 
to the least positive integer n such that nT and nllTl[T -1 are integral matrices. A basis for the CSL can 
be determined quickly if lattices 1 and 2 are related by a rotation. 

Density of coincidence sites 

The coincidence-site lattice model of a grain boundary 
considers the lattices that correspond to the crystals on 
both sides of the boundary (for example see Brandon, 
Ralph, Ranganathan & Wald, 1964). Working with 
this model we have to find out whether the metric 
properties of the lattices and their observed relative 
orientation are such that the two lattices, which we 
shall call 1 and 2, have vectors in common. If there are 
common vectors, they will form either a linear, a 
planar, or a spatial lattice. In the last case we shall 
speak of a coincidence-site lattice (CSL) and shall 
denote by ~rl (or Z2) the ratio of the volumes of 
primitive cells for the CSL and for lattice 1 (or 2). Z'~ 
and L~2 are positive integers. Let the vectors b~,b2,b3 
form a basis of lattice 1 (i.e. b~, b2, and b3 span a primi- 
tive cell of lattice 1) and let b~,bz, b~ be a basis of 

lattice 2. We can write 

b'l = tllbl + tx2b2 -I- taab3 
b2 = t21bl -I- t22b2 -t- t23b 3 
b3 = talbl -t- ta2b2 -Jr t33ba , 

or, introducing matrix notation, 

where 
b ' = T b ,  

b ' =  b; , b =  b2 
b; b3 

and T is a 3 x 3 matrix. Let [ITII be the absolute value 
of the determinant of T. We shall call a matrix 'ra- 
tional' if all its nine elements are rational numbers and 
'integral' if all its nine elements are integers. In the 
Appendix we shall prove the following two theorems. 
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